Mostrando entradas con la etiqueta titanio. Mostrar todas las entradas
Mostrando entradas con la etiqueta titanio. Mostrar todas las entradas

martes, 3 de septiembre de 2024

Comparación de los clavos intramedulares de fibra de carbono y titanio en oncología ortopédica

 https://www.ortopediaoncologicamexico.mx/academia/comparacion-de-los-clavos-intramedulares-de-fibra-de-carbono-y-titanio-en-oncologia-ortopedica/


Comparación de los clavos intramedulares de fibra de carbono y titanio en oncología ortopédica

Este estudio piloto demuestra un perfil quirúrgico y clínico a corto plazo no inferior que respalda la consideración adicional de los clavos de fibra de carbono para la fijación de fracturas patológicas en pacientes de oncología ortopédica.
#BJO #Oncología #Cirugía

Comparison of carbon fibre and titanium intramedullary nails in orthopaedic oncology | Bone & Joint (boneandjoint.org.uk)

Introducción
A pesar de la contribución de la fibra de carbono a los dramáticos cambios de paradigma en otras industrias comerciales y científicas,1 la fibra de carbono se ha incorporado al campo médico y a los implantes ortopédicos hace relativamente poco tiempo. El poliéter éter cetona de fibra de carbono (CF-PEEK) es quizás la aplicación más conocida de la fibra de carbono en la actualidad en el campo de la ortopedia. Estos implantes son radiotransparentes, lo que ofrece inmensas ventajas de imagen sobre los implantes de titanio, ya que hay una dispersión significativamente menor en la TC o artefactos de susceptibilidad en la RMN. Esto es especialmente relevante para la oncología ortopédica, ya que los implantes radiotransparentes permitirían una mejor visualización de la curación ósea, la vigilancia posoperatoria de la recurrencia o progresión de la enfermedad local y una mejor capacidad para la planificación de la radiación.2,3

Las mismas características de rendimiento se aplican cuando se utilizan para el tratamiento de sarcomas primarios de hueso o de tejidos blandos. En el primer caso, estos implantes pueden ser útiles para la reconstrucción del aloinjerto, lo que permite el control de la incorporación del aloinjerto y la vigilancia local. En el segundo, pueden ser útiles para la protección profiláctica del hueso que ha sido o será irradiado como parte del tratamiento de un sarcoma de tejidos blandos, al tiempo que permiten una mejor capacidad para la vigilancia local. En la actualidad, hay una escasez de literatura que describa el uso de implantes basados ​​en fibra de carbono para la fijación de fracturas patológicas.4-6

Por lo tanto, en este estudio, investigamos las características quirúrgicas y los resultados a corto plazo de una cohorte de pacientes con sarcoma y pacientes con enfermedad ósea metastásica con tumores primarios de diferentes orígenes en nuestra institución, que se sometieron a una fijación profiláctica o terapéutica con un implante de fibra de carbono para fractura patológica inminente o completada. Planteamos la hipótesis de que los resultados quirúrgicos y los perfiles clínicos a corto plazo serían similares entre los grupos de implantes de fibra de carbono y de titanio.


Debido a su radiolucidez y propiedades mecánicas favorables, los clavos de fibra de carbono pueden ser una alternativa preferible a los clavos de titanio para pacientes oncológicos. Nuestro objetivo es comparar las características quirúrgicas y los resultados a corto plazo de los pacientes que se sometieron a una fijación intramedular con un clavo de titanio o de fibra de carbono para una fractura patológica de huesos largos.

Conclusión
Este estudio piloto demuestra un perfil clínico a corto plazo y quirúrgico no inferior que respalda la consideración adicional de los clavos de fibra de carbono para la fijación de fracturas patológicas en pacientes de oncología ortopédica. Dada la mejor adaptación de los métodos de diagnóstico por imágenes importantes para la vigilancia oncológica y la planificación de la radioterapia, así como las altas tolerancias al estrés por fatiga, los implantes de fibra de carbono poseen importantes ventajas oncológicas sobre los implantes de titanio que merecen una mayor investigación prospectiva.

Comparison of carbon fibre and titanium intramedullary nails in orthopaedic oncology – PubMed (nih.gov)

Comparison of carbon fibre and titanium intramedullary nails in orthopaedic oncology – PMC (nih.gov)

Comparison of carbon fibre and titanium intramedullary nails in orthopaedic oncology | Bone & Joint (boneandjoint.org.uk)

Yeung CM, Bhashyam AR, Groot OQ, Merchan N, Newman ET, Raskin KA, Lozano-Calderón SA. Comparison of carbon fibre and titanium intramedullary nails in orthopaedic oncology. Bone Jt Open. 2022 Aug;3(8):648-655. doi: 10.1302/2633-1462.38.BJO-2022-0092.R1. PMID: 35983704; PMCID: PMC9422899.

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (CC BY-NC-ND 4.0) licence, which permits the copying and redistribution of the work only, and provided the original author and source are credited. See https://creativecommons.org/licenses/by-nc-nd/4.0/




lunes, 28 de marzo de 2022

Predictores de hundimiento después de la fusión intersomática lumbar lateral

 https://www.columnaalcocermanrique.mx/academia/predictores-de-hundimiento-despues-de-la-fusion-intersomatica-lumbar-lateral/


Predictores de hundimiento después de la fusión intersomática lumbar lateral

  • La fusión intersomática lumbar lateral (LLIF) facilita la restauración de la altura del disco y la descompresión indirecta de los elementos neurales. Sin embargo, estos beneficios se pierden cuando el injerto se hunde en las placas terminales adyacentes. Los factores que conducen al hundimiento después de LLIF son poco conocidos. Este artículo presenta una serie de casos de pacientes que se sometieron a LLIF y reporta factores que se correlacionan con
  • En general, la prevalencia de hundimiento después de LLIF fue baja en esta serie clínica. Las jaulas de titanio se asociaron con una menor prevalencia de hundimiento observado en el análisis univariante; sin embargo, el análisis multivariante demostró que este efecto puede atribuirse al área de superficie aumentada de estas cajas en relación con el área inferior del platillo.

https://pubmed.ncbi.nlm.nih.gov/35245900/

https://thejns.org/spine/view/journals/j-neurosurg-spine/aop/article-10.3171-2022.1.SPINE201893/article-10.3171-2022.1.SPINE201893.xml

Ohiorhenuan IE, Walker CT, Zhou JJ, Godzik J, Sagar S, Farber SH, Uribe JS. Predictors of subsidence after lateral lumbar interbody fusion. J Neurosurg Spine. 2022 Mar 4:1-5. doi: 10.3171/2022.1.SPINE201893. Epub ahead of print. PMID: 35245900.

© Copyright 1944-2022 American Association of Neurological Surgeons





lunes, 23 de abril de 2018

Consiguen mejorar la respuesta del cuerpo humano a los implantes

http://www.clinicadeartroscopia.com.mx/academia/consiguen-mejorar-la-respuesta-del-cuerpo-humano-a-los-implantes/

Investigadores han ideado un nuevo tratamiento superficial que, aplicado a los biomateriales, permitirá disminuir el rechazo que de forma natural genera nuestro cuerpo hacia los implantes. Esto aumentará la vida útil de las prótesis y, por lo tanto, mejorará la calidad de vida de los pacientes.



Fuente
Este artículo es publicado originalmente en:

https://www.ncbi.nlm.nih.gov/pubmed/29463865/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820288/

https://www.nature.com/articles/s41598-018-21685-3

http://www.madrimasd.org/notiweb/noticias/consiguen-mejorar-respuesta-cuerpo-humano-los-implantes?origen=notiweb


De:

Rezvanian P1,2Daza R1,2López PA1,2Ramos M1,3,4González-Nieto D1,3,4Elices M1,2Guinea GV1,2,3Pérez-Rigueiro J5,6,7.



Todos los derechos reservados para:

Abstract

This study presents the development of an efficient procedure for covalently immobilizing collagen molecules on AVS-functionalized Ti-6Al-4Vsamples, and the assessment of the survival and proliferation of cells cultured on these substrates. Activated Vapor Silanization (AVS) is a versatile functionalization technique that allows obtaining a high density of active amine groups on the surface. A procedure is presented to covalently bind collagen to the functional layer using EDC/NHS as cross-linker. The covalently bound collagen proteins are characterized by fluorescence microscopy and atomic force microscopy and their stability is tested. The effect of the cross-linker concentration on the process is assessed. The concentration of the cross-linker is optimized and a reliable cleaning protocol is developed for the removal of the excess of carbodiimide from the samples. The results demonstrate that the covalent immobilization of collagen type I on Ti-6Al-4V substrates, using the optimized protocol, increases the number of viable cells present on the material. Consequently, AVS in combination with the carbodiimide chemistry appears as a robust method for the immobilization of proteins and, for the first time, it is shown that it can be used to enhance the biological response to the material.

Resumen

Este estudio presenta el desarrollo de un procedimiento eficiente para la inmovilización covalente de moléculas de colágeno en muestras de Ti-6Al-4V funcionalizadas con AVS, y la evaluación de la supervivencia y la proliferación de células cultivadas en estos sustratos. La Silanización de Vapor Activada (AVS) es una técnica de funcionalización versátil que permite obtener una alta densidad de grupos de amina activa en la superficie. Se presenta un procedimiento para unir covalentemente colágeno a la capa funcional usando EDC / NHS como reticulante. Las proteínas de colágeno unidas covalentemente se caracterizan por microscopía de fluorescencia y microscopía de fuerza atómica y se prueba su estabilidad. Se evalúa el efecto de la concentración de reticulante en el proceso. La concentración del reticulante se optimiza y se desarrolla un protocolo de limpieza confiable para la eliminación del exceso de carbodiimida de las muestras. Los resultados demuestran que la inmovilización covalente del colágeno tipo I sobre sustratos de Ti-6Al-4V, usando el protocolo optimizado, aumenta el número de células viables presentes en el material. En consecuencia, AVS en combinación con la química de carbodiimida aparece como un método robusto para la inmovilización de proteínas y, por primera vez, se muestra que puede usarse para mejorar la respuesta biológica al material.


En un artículo publicado en la revista Scientific Reports, investigadores del Centro de Tecnología Biomédica de la Universidad Politécnica de Madrid (CTB-UPM) han desarrollado una nueva tecnología que permite modificar la superficie de los biomateriales metálicos para mejorar su interacción con el medio biológico. El procedimiento -denominado Silanización por Vapor Activado (o AVS por sus iniciales en inglés)- consiste en recubrir la superficie del material con una capa de menos de una milésima de milímetro a la que es posible unir moléculas que se encuentran de manera natural dentro de nuestro organismo. Esto, aplicado a materiales utilizados para la fabricación de prótesis, disminuirá la posibilidad de rechazo al implante, lo que aumentará su vida útil.
Nuestro organismo es el resultado de un proceso por el que nuestros ancestros se han adaptado a un ambiente exterior eminentemente hostil. Como resultado de este proceso, la exposición a prácticamente cualquier sustancia que no resulta esencial para nuestra supervivencia se considera como una amenaza e induce una respuesta agresiva. Este mecanismo, vital para nuestra supervivencia, se convierte en una barrera que es necesario superar para el desarrollo de cualquier terapia que implique el contacto directo de un material con cualquier órgano o tejido. Esta circunstancia limita enormemente el número de posibles materiales disponibles para uso médico que, en el caso de los metales, queda reducido a solo tres: acero inoxidable, aleaciones de base cobalto y aleaciones de titanio.
Los biomateriales metálicos son imprescindibles en prótesis que estén sometidas a esfuerzos elevados, tales como las prótesis de cadera y de rodilla. Sin embargo, incluso los metales empleados en medicina no generan una reacción óptima en el organismo. La respuesta natural del cuerpo hacia estos biomateriales metálicos tiende a recubrirlos por una especie de cicatriz, que aísla al material de los tejidos funcionales que lo rodean. Dicha cicatriz puede suponer un problema a corto plazo al favorecer la posibilidad de que aparezca una infección en el entorno de la prótesis y, además, a largo plazo puede inducir el aflojamiento del implante. Como solución a ambas situaciones suele ser necesario someter al paciente a una nueva intervención quirúrgica. Teniendo en cuenta todo esto, parece clara la conveniencia de conseguir establecer un contacto íntimo y fiable entre el material y el tejido funcional circundante. De esta manera se disminuiría la posibilidad del rechazo al implante aumentando su vida útil.

Este ha sido el objetivo del trabajo llevado a cabo por los investigadores del Laboratorio de Biomateriales e Ingeniería Regenerativadel CTB-UPM. Han desarrollado un nueva técnica denomina AVS –Activated Vapor Silanization– que permite depositar sobre la superficie de biomateriales metálicos una capa de menos de una micra de espesor a la que han comprobado que es posible unir moléculas que se encuentran de manera natural dentro de nuestro organismo.
En particular, han observado que al inmovilizar moléculas de colágeno sobre una superficie de aleación de titanio consiguen no solo aumentar el número de las células que crecen sobre el material, sino también que dichas células presenten un tamaño sensiblemente mayor.
En opinión de José Pérez, investigador responsable de este trabajo, “la tecnología AVS representa un procedimiento robusto y versátil, que puede ser adaptado de manera sencilla a los procedimientos actualmente empleados para la producción de los biomateriales metálicos”. De esta forma, la aplicación de esta tecnología ofrece la posibilidad de mejorar sensiblemente la calidad de vida de los pacientes a los que haya que implantar una prótesis en el futuro.

Referencia bibliográfica:
Rezvanian, P; et al., 2018. Enhanced Biological Response of AVS-Functionalized Ti-6Al-4V Alloy through Covalent Immobilization of Collagen.SCIENTIFIC REPORTS, 8. DOI: 10.1038/s41598-018-21685-3