Mostrando entradas con la etiqueta implantes. Mostrar todas las entradas
Mostrando entradas con la etiqueta implantes. Mostrar todas las entradas

miércoles, 24 de marzo de 2021

Resultado del desbridamiento, antibióticos y retención de implantes con intercambio de componentes modulares en infecciones articulares periprotésicas agudas con cultivo negativo

 https://www.traumaysiniestros.com.mx/academia/resultado-del-desbridamiento-antibioticos-y-retencion-de-implantes-con-intercambio-de-componentes-modulares-en-infecciones-articulares-periprotesicas-agudas-con-cultivo-negativo/


Resultado del desbridamiento, antibióticos y retención de implantes con intercambio de componentes modulares en infecciones articulares periprotésicas agudas con cultivo negativo

El intercambio de componentes modulares y el tratamiento antibiótico dirigido por cultivo se emplean de forma rutinaria para la infección articular periprotésica aguda (PJI). Sin embargo, se ha informado que hasta un 7% -23% de los PJI producen resultados de cultivo negativos. La eficacia del desbridamiento, los antibióticos y la retención de implantes (DAIR) con el intercambio de componentes modulares en el contexto de la PJI aguda con cultivo negativo sigue siendo en gran parte desconocida. El objetivo de nuestro estudio es evaluar los resultados de DAIR con intercambio de componentes modulares en PJI agudo con cultivo positivo y negativo con cultivo.



A pesar de la falta de un organismo de identificación para guiar la terapia con antibióticos posoperatorios, DAIR con intercambio de componentes modulares para PJI agudo con cultivo negativo se asoció con tasas de reinfección similares en comparación con PJI agudo con cultivo positivo, lo que sugiere que la negatividad del cultivo puede no ser una contraindicación para DAIR en pacientes con PJI aguda.

https://pubmed.ncbi.nlm.nih.gov/32981773/

https://www.arthroplastyjournal.org/article/S0883-5403(20)30974-8/fulltext

Tirumala V, Smith E, Box H, van den Kieboom J, Klemt C, Kwon YM. Outcome of Debridement, Antibiotics, and Implant Retention With Modular Component Exchange in Acute Culture-Negative Periprosthetic Joint Infections. J Arthroplasty. 2021 Mar;36(3):1087-1093. doi: 10.1016/j.arth.2020.08.065. Epub 2020 Sep 7. PMID: 32981773.

Copyright © 2020 Elsevier Inc. All rights reserved.

lunes, 23 de abril de 2018

Consiguen mejorar la respuesta del cuerpo humano a los implantes

http://www.clinicadeartroscopia.com.mx/academia/consiguen-mejorar-la-respuesta-del-cuerpo-humano-a-los-implantes/

Investigadores han ideado un nuevo tratamiento superficial que, aplicado a los biomateriales, permitirá disminuir el rechazo que de forma natural genera nuestro cuerpo hacia los implantes. Esto aumentará la vida útil de las prótesis y, por lo tanto, mejorará la calidad de vida de los pacientes.



Fuente
Este artículo es publicado originalmente en:

https://www.ncbi.nlm.nih.gov/pubmed/29463865/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820288/

https://www.nature.com/articles/s41598-018-21685-3

http://www.madrimasd.org/notiweb/noticias/consiguen-mejorar-respuesta-cuerpo-humano-los-implantes?origen=notiweb


De:

Rezvanian P1,2Daza R1,2López PA1,2Ramos M1,3,4González-Nieto D1,3,4Elices M1,2Guinea GV1,2,3Pérez-Rigueiro J5,6,7.



Todos los derechos reservados para:

Abstract

This study presents the development of an efficient procedure for covalently immobilizing collagen molecules on AVS-functionalized Ti-6Al-4Vsamples, and the assessment of the survival and proliferation of cells cultured on these substrates. Activated Vapor Silanization (AVS) is a versatile functionalization technique that allows obtaining a high density of active amine groups on the surface. A procedure is presented to covalently bind collagen to the functional layer using EDC/NHS as cross-linker. The covalently bound collagen proteins are characterized by fluorescence microscopy and atomic force microscopy and their stability is tested. The effect of the cross-linker concentration on the process is assessed. The concentration of the cross-linker is optimized and a reliable cleaning protocol is developed for the removal of the excess of carbodiimide from the samples. The results demonstrate that the covalent immobilization of collagen type I on Ti-6Al-4V substrates, using the optimized protocol, increases the number of viable cells present on the material. Consequently, AVS in combination with the carbodiimide chemistry appears as a robust method for the immobilization of proteins and, for the first time, it is shown that it can be used to enhance the biological response to the material.

Resumen

Este estudio presenta el desarrollo de un procedimiento eficiente para la inmovilización covalente de moléculas de colágeno en muestras de Ti-6Al-4V funcionalizadas con AVS, y la evaluación de la supervivencia y la proliferación de células cultivadas en estos sustratos. La Silanización de Vapor Activada (AVS) es una técnica de funcionalización versátil que permite obtener una alta densidad de grupos de amina activa en la superficie. Se presenta un procedimiento para unir covalentemente colágeno a la capa funcional usando EDC / NHS como reticulante. Las proteínas de colágeno unidas covalentemente se caracterizan por microscopía de fluorescencia y microscopía de fuerza atómica y se prueba su estabilidad. Se evalúa el efecto de la concentración de reticulante en el proceso. La concentración del reticulante se optimiza y se desarrolla un protocolo de limpieza confiable para la eliminación del exceso de carbodiimida de las muestras. Los resultados demuestran que la inmovilización covalente del colágeno tipo I sobre sustratos de Ti-6Al-4V, usando el protocolo optimizado, aumenta el número de células viables presentes en el material. En consecuencia, AVS en combinación con la química de carbodiimida aparece como un método robusto para la inmovilización de proteínas y, por primera vez, se muestra que puede usarse para mejorar la respuesta biológica al material.


En un artículo publicado en la revista Scientific Reports, investigadores del Centro de Tecnología Biomédica de la Universidad Politécnica de Madrid (CTB-UPM) han desarrollado una nueva tecnología que permite modificar la superficie de los biomateriales metálicos para mejorar su interacción con el medio biológico. El procedimiento -denominado Silanización por Vapor Activado (o AVS por sus iniciales en inglés)- consiste en recubrir la superficie del material con una capa de menos de una milésima de milímetro a la que es posible unir moléculas que se encuentran de manera natural dentro de nuestro organismo. Esto, aplicado a materiales utilizados para la fabricación de prótesis, disminuirá la posibilidad de rechazo al implante, lo que aumentará su vida útil.
Nuestro organismo es el resultado de un proceso por el que nuestros ancestros se han adaptado a un ambiente exterior eminentemente hostil. Como resultado de este proceso, la exposición a prácticamente cualquier sustancia que no resulta esencial para nuestra supervivencia se considera como una amenaza e induce una respuesta agresiva. Este mecanismo, vital para nuestra supervivencia, se convierte en una barrera que es necesario superar para el desarrollo de cualquier terapia que implique el contacto directo de un material con cualquier órgano o tejido. Esta circunstancia limita enormemente el número de posibles materiales disponibles para uso médico que, en el caso de los metales, queda reducido a solo tres: acero inoxidable, aleaciones de base cobalto y aleaciones de titanio.
Los biomateriales metálicos son imprescindibles en prótesis que estén sometidas a esfuerzos elevados, tales como las prótesis de cadera y de rodilla. Sin embargo, incluso los metales empleados en medicina no generan una reacción óptima en el organismo. La respuesta natural del cuerpo hacia estos biomateriales metálicos tiende a recubrirlos por una especie de cicatriz, que aísla al material de los tejidos funcionales que lo rodean. Dicha cicatriz puede suponer un problema a corto plazo al favorecer la posibilidad de que aparezca una infección en el entorno de la prótesis y, además, a largo plazo puede inducir el aflojamiento del implante. Como solución a ambas situaciones suele ser necesario someter al paciente a una nueva intervención quirúrgica. Teniendo en cuenta todo esto, parece clara la conveniencia de conseguir establecer un contacto íntimo y fiable entre el material y el tejido funcional circundante. De esta manera se disminuiría la posibilidad del rechazo al implante aumentando su vida útil.

Este ha sido el objetivo del trabajo llevado a cabo por los investigadores del Laboratorio de Biomateriales e Ingeniería Regenerativadel CTB-UPM. Han desarrollado un nueva técnica denomina AVS –Activated Vapor Silanization– que permite depositar sobre la superficie de biomateriales metálicos una capa de menos de una micra de espesor a la que han comprobado que es posible unir moléculas que se encuentran de manera natural dentro de nuestro organismo.
En particular, han observado que al inmovilizar moléculas de colágeno sobre una superficie de aleación de titanio consiguen no solo aumentar el número de las células que crecen sobre el material, sino también que dichas células presenten un tamaño sensiblemente mayor.
En opinión de José Pérez, investigador responsable de este trabajo, “la tecnología AVS representa un procedimiento robusto y versátil, que puede ser adaptado de manera sencilla a los procedimientos actualmente empleados para la producción de los biomateriales metálicos”. De esta forma, la aplicación de esta tecnología ofrece la posibilidad de mejorar sensiblemente la calidad de vida de los pacientes a los que haya que implantar una prótesis en el futuro.

Referencia bibliográfica:
Rezvanian, P; et al., 2018. Enhanced Biological Response of AVS-Functionalized Ti-6Al-4V Alloy through Covalent Immobilization of Collagen.SCIENTIFIC REPORTS, 8. DOI: 10.1038/s41598-018-21685-3

lunes, 27 de febrero de 2017

Idean nuevos implantes para el tratamiento de infecciones y tumores óseos



Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection

Fuente
Este artículo es originalmente publicado en:
De:
Acta Biomater. 2017 Mar 1;50:114-126. doi: 10.1016/j.actbio.2016.12.025. Epub 2016 Dec 9.
Todos los derechos reservados para:
Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Abstract
Silica mesoporous nanomaterials have been proved to have meaningful application in biotechnology and biomedicine. Particularly, mesoporous bioactive glasses are recently gaining importance thanks to their bone regenerative properties. Moreover, the mesoporous nature of these materials makes them suitable for drug delivery applications, opening new lines in the field of bone therapies. In this work, we have developed innovative nanodevices based on the implementation of adenosine triphosphate (ATP) and ε-poly-l-lysine molecular gates using a mesoporous bioglass as an inorganic support. The systems have been previously proved to work properly with a fluorescence probe and subsequently with an antibiotic (levofloxacin) and an antitumoral drug (doxorubicin). The bioactivity of the prepared materials has also been tested, giving promising results. Finally, in vitro cell culture studies have been carried out; demonstrating that this gated devices can provide useful approaches for bone cancer and bone infection treatments.
STATEMENT OF SIGNIFICANCE:
Molecular-gated materials have recently been drawing attention due to their applications in fields as biomedicine and molecular recognition. For the first time as we are aware, we report herein a new enzymatic responsive molecular-gated device consisting in a mesoporous bioactive glass support implemented with two different molecular gates. Both controlled drug delivery properties and apatite-like phase formation ability of the device have been demonstrated, getting promising results. This approach opens up the possibility of developing new stimuli-responsive tailored bio-materials for bone cancer and infection treatments as well as regenerative bone grafts.
Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
KEYWORDS:
Biomaterials; Controlled release; Gated mesoporous bioactive glasses

Resumen
Se ha demostrado que los nanomateriales mesoporosos de sílice tienen una aplicación significativa en biotecnología y biomedicina. En particular, los cristales bioactivos mesoporosos están ganando importancia recientemente gracias a sus propiedades regenerativas óseas. Además, la naturaleza mesoporosa de estos materiales los hace adecuados para aplicaciones de administración de fármacos, abriendo nuevas líneas en el campo de las terapias óseas. En este trabajo hemos desarrollado innovadores nanodispositivos basados ​​en la implementación de las puertas moleculares de adenosina trifosfato (ATP) y ε-poli-l-lisina usando un bioglass mesoporoso como soporte inorgánico. Se ha demostrado previamente que los sistemas funcionan correctamente con una sonda de fluorescencia y posteriormente con un antibiótico (levofloxacino) y un fármaco antitumoral (doxorrubicina). La bioactividad de los materiales preparados también ha sido probada, dando resultados prometedores. Finalmente, se han llevado a cabo estudios de cultivos celulares in vitro; Lo que demuestra que estos dispositivos bloqueados pueden proporcionar enfoques útiles para el cáncer de hueso y los tratamientos de infección ósea.
DECLARACIÓN DE SIGNIFICACIÓN:
Recientemente, los materiales de construcción molecular atrajeron la atención debido a sus aplicaciones en campos como la biomedicina y el reconocimiento molecular. Por primera vez, como se sabe, presentamos un nuevo dispositivo de respuesta molecular de respuesta enzimática que consiste en un soporte de vidrio bioactivo mesoporoso implementado con dos puertas moleculares diferentes. Se han demostrado tanto las propiedades controladas de administración de fármacos como la capacidad de formación de fase de tipo apatita del dispositivo, obteniendo resultados prometedores. Este enfoque abre la posibilidad de desarrollar nuevos estímulos sensibles a la medida bio-materiales para el cáncer de hueso y los tratamientos de infección, así como regenerativos injertos óseos.
Copyright © 2016 Acta Materialia Inc. Publicado por Elsevier Ltd. Todos los derechos reservados.
PALABRAS CLAVE:
Biomateriales; Liberacion controlada; cristales bioactivos mesoporosos cerradas
PMID: 27956362   DOI:  
[PubMed – in process]