viernes, 19 de noviembre de 2010

Antibiotic resistance

MJA Practice Essentials — Infectious Diseases
11: Antibiotic resistance
Peter Collignon
Series Editors: M Lindsay Grayson, Steven Wesselingh
MJA 2002 177 (6): 325-329
Abstract
  • Antibiotic resistance is a consequence of antibiotic use — we need to use antibiotics less and to use them prudently.
  • Plans to combat antibiotic resistance were recently proposed by the World Health Organization, a United States interagency taskforce and the Australian Joint Expert Technical Advisory Committee on Antibiotic Resistance.
  • Prudent antibiotic use includes not using antibiotics when benefit is minimal (eg, in many respiratory tract infections), using narrow-spectrum antibiotics whenever possible and using optimal dosages and regimens.
  • The need for antibiotic therapy can be reduced by preventing infections through vaccination, infection control measures and improved sanitation.
  • Surveillance of antibiotic resistance is needed to target interventions for minimising antibiotic use.
  • More research is needed into new antibiotics and regimens and into improving medical devices and protocols to prevent infection.
Some simple changes to practice could reduce development and spread of antibiotic resistance
Before antibiotics were available, bacterial infections such as meningitis and endocarditis were almost uniformly fatal, and common infections such as Staphylococcus aureus bacteraemia had a mortality of 80%.1 One of the major medical advances of the last century was the development of effective antibiotics. However, with widespread use of antibiotics came antibiotic resistance.
Emergence of antibiotic resistance
By the late 1950s, many people with serious S. aureus infections had entered a "post-antibiotic" era, as most isolates were resistant to penicillin, the "last-line" antibiotic of the time. Fortunately, in the 1960s, new classes of drugs were developed, such as vancomycin and methicillin, which overcame the problem of resistance. These agents, or their subsequent derivatives (eg, dicloxacillin and flucloxacillin), remain the agents of choice for most S. aureus infections today.
Unfortunately, antibiotic resistance has moved on. Increasing numbers of S. aureus infections are caused by methicillin-resistant strains (MRSA), including many infections acquired in the community.2,3 None of the β-lactam antibiotics (including methicillin derivatives and cephalosporins) are effective in these infections. Until recently, this left vancomycin as the last-line antibiotic for hospital treatment of serious MRSA infections. However, although vancomycin was once reliable against all gram-positive organisms, including MRSA and enterococci, increasing numbers of S. aureus strains now also respond poorly to this antibiotic.4 These vancomycin-intermediate S. aureus strains (VISAs) have been found in many countries, including Australia.5 Vancomycin-resistant enterococci (VRE) have also been found in Australia, Europe and the United States.6,7 Patients with serious infections caused by VRE, such as bacteraemia, have high mortality.6
Because of concern about vancomycin resistance, two new agents — quinupristin–dalfopristin and linezolid — were developed and rapidly approved for clinical use. However, the former is not effective against Enterococcus faecalis, while resistance to the latter has been detected in bacteria isolated after therapy, including VRE and MRSA.8,9
The problem of antibiotic resistance also occurs in gram-negative bacteria. There are few or no antibiotics available now (or likely to be available soon) to treat life-threatening infections caused by some of these bacteria. For example, Acinetobacter baumanii has caused outbreaks of infections in intensive-care units in Australia, as well as overseas.10
Bacteria resistant to "last-line" antibiotics, such as carbapenems (eg, meropenem), glycopeptides (eg, vancomycin), fluoroquinolones (eg, ciprofloxacin) and third-generation cephalosporins (eg, cefotaxime), are often found in Australian hospitals. Some are also found in the community and even in food.7,11 Many taskforces and committees have reported on the growing problem of antibiotic resistance, including the Australian Joint Expert Technical Advisory Committee on Antibiotic Resistance (JETACAR).12 Both a United States interagency taskforce and the World Health Organization recently proposed plans to combat antibiotic resistance.13,14
Mechanisms of antibiotic resistance
Selective advantage
Most antibiotics modify or interfere with essential functions or structures of bacteria, and many appear to be analogues of elements of bacterial metabolism or to mimic natural signals. This may explain why the genes encoding resistance may be widespread even before antibiotic use.15 For example, wild animals in Australia have little or no exposure to antibiotics, yet a study of Escherichia coli isolates from kangaroos and wombats found that 3% were resistant to amoxycillin, 2% to cephazolin, 0.2% to tetracycline, and 0.2% to trimethoprim.15 Antibiotic resistance was also present, albeit at low levels, in other Enterobacteriaceae isolates (eg, trimethoprim resistance in 3% of Enterobacter cloacae isolates).
However, when antibiotics are used, bacteria with DNA encoding resistance have a selective advantage over sensitive bacteria and can more easily multiply (along with their genetic material). Their larger numbers facilitate their spread from bacterium to bacterium (Box 1), person to person, animal to animal, and within the environment.
For example, MRSA caused infections in hospital patients in India, Turkey and Poland before methicillin had been used in these countries.16 However, when methicillin and its derivatives became readily available, MRSA strains were encountered much more often.16 Individual strains spread efficiently not only within hospitals, but also between hospitals and internationally. Indeed, a major hospital epidemic strain of MRSA in the United Kingdom originated in Australia.17 In addition, strains of MRSA that originated in the community (eg, in Samoa and the Kimberley region of Australia) now cause infections in people who have had no hospital contact in Australia and many other countries.2,3
Genetic transfer
Most bacteria have mechanisms that allow them to share genetic material, such as conjugation (Box 1). These mechanisms allow the genes encoding antibiotic resistance to move between bacteria not only of the same species but also of different species and genera. Genetic material encoding resistance is often "clonal" (ie, identical across a wide range of bacteria) and can readily move between bacteria of the same species and different species and genera, especially when carried within a plasmid or transposon. For example, the vanA gene, which encodes vancomycin resistance, is carried within a transposon and moves easily between enterococcal species and potentially to other gram-positive cocci, such as staphylococci.18 Indeed, evidence of transfer of vanA from VRE to an MRSA strain was recently seen in a renal dialysis patient in the United States.19
Cross-resistance
To compound the problem of antibiotic resistance, exposure to one antibiotic may help select resistance to others. If an E. coli isolate is resistant to a first-generation cephalosporin (eg, cephalexin), then it will also be resistant to all other cephalosporins of the same generation (eg, cephazolin). Furthermore, if an isolate becomes resistant to a third-generation cephalosporin (eg, cefotaxime), then it will also be resistant to all first- and second-generation cephalosporins.
Cross-resistance also occurs across classes of antibiotics. For example, MRSA strains are resistant to methicillin and its derivatives because of changes to the bacterial receptors for these antibiotics (penicillin-binding proteins); these changed receptors have insufficient activity to result in bacterial death when exposed to the antibiotics. As similar receptors are required by all other β-lactams (including cephalosporins and carbapenems), they too are ineffective against MRSA.
The phenomenon of cross-resistance is one of the principal reasons for recommending narrow-spectrum antibiotics to treat infections whenever possible. If resistance develops, then it will usually be to fewer antibiotics than if a broad-spectrum agent had been used.
Bacteria can also be resistant to many different classes of antibiotics ("multiresistant"). An example is Streptococcus pneumoniae: some isolates are resistant to ampicillin, erythromycin, tetracycline and trimethoprim–sulfamethoxazole20 (case history, Box 2). This not only limits the choice of antibiotic therapy, possibly excluding all oral agents, but also means that the use of any of these antibiotics selects for the multiresistant strain ("coselection"), promoting its persistence.
How to avoid antibiotic resistance
The development and spread of antibiotic resistance are consequences of antibiotic use — in medicine, agriculture and other areas, such as aquaculture. To reduce antibiotic resistance, we need to use antibiotics less and to use them prudently. As bacteria do not respect artificial boundaries between environments, this is essential in all areas of use. Strategies to decrease the development and spread of antibiotic resistance are shown in Box 3.
Prudent antibiotic use
In medicine, prudent antibiotic use dictates that we should not use antibiotics unless they improve patient outcome. Not all bacterial infections need antibiotic therapy. For example, in acute bacterial bronchitis and sore throat, any benefit to the patient from antibiotic therapy is small and counterbalanced by the risk of drug side effects, such as rash.22,23 Interventions other than antibiotics, such as regular analgesia, are more effective in decreasing symptoms.
In addition, when assessing whether antibiotics should be used for common bacterial infections, the population effect must be taken into account, especially in infections that usually resolve spontaneously with little extra benefit from antibiotic use. Antibiotic use exerts selective pressure not only on the pathogen being treated, but also on the patient's normal flora. Antibiotic resistance in S. pneumoniae is a rapidly growing problem in the community, both in Australia and abroad20(case history, Box 2). An Australian study found that the presence of penicillin-resistant S. pneumoniae in the nasal flora of preschool children was significantly associated with their use of β-lactam antibiotics in the preceding two months.24 The risk that a child carried a resistant strain of S. pneumoniae increased by 4% for each day that the antibiotics were used.24
When antibiotic therapy is to be used, it should be targeted as far as possible to the pathogen, which may need to be culturedNarrow-spectrum antibiotics should be chosen whenever possible. Antibiotics should be used in the optimal dosages and regimens, and should be stopped when the infection is treated.
In agriculture, large quantities of antibiotics are used for growth promotion.7,12 This has contributed to large numbers of antibiotic-resistant bacteria being ingested by humans via the food chain (eg, VRE in Europe7).
Preventing infections
Use of antibiotics can also be reduced by preventing infections in the first place. For example, since the introduction of an effective vaccine for Haemophilus influenzaetype B (Hib) in Australia, so few Hib infections have occurred25 that antibiotic resistance of this organism is no longer a major issue.
Antibiotic-resistant Salmonella species (eg, Salmonella typhi) are major causes of illness throughout the world. The problem of Salmonella infection is worst where the water supply is contaminated with faecal material from humans or animals. Providing a safe water supply will decrease antibiotic use and the consequent selective pressure on Salmonella species and other bacteria carried by patients.
In hospitals, improving infection control practices could prevent many infections and decrease the need for antibiotic therapy (eg, use of aseptic technique for inserting intravenous and urinary catheters, and compliance with handwashing protocols26). Specific modifications to medical procedures and protocols could also prevent infections. For example, the incidence of infections associated with intravenous catheters can be reduced by removing the devices when they are no longer essential.27Research on the prophylactic use of antibiotics in surgery has shown that rates of postoperative infection are lower if a single dose of antibiotic is given at skin incision than if a longer course is given before and after the procedure — the previously established practice.28 Following the new guidelines can hugely decrease the amount of antibiotics used for surgical prophylaxis while improving outcomes. More research is needed into improving medical procedures and protocols to reduce infections.
Good hygiene in the home, especially during food preparation and storage, also has the potential to prevent infections, such as Salmonella and Campylobacterinfections, and thereby minimise antibiotic use.
Conclusion
Resistance is a problem not only in bacteria. Whenever agents are used that interfere with the multiplication of organisms, resistance almost inevitably develops. Examples are viruses (eg, HIV), fungi (eg, Candida spp.) and herbicide resistance in plants. By using the optimal dosages and regimens, and most importantly by limiting their overuse, the lifetime of these important agents can be extended, and resistance minimised. Specific "action steps" that doctors can take to prevent antimicrobial resistance in the community are shown in Box 4.
Evidence-based recommendations
  • Antibiotics for sore throat: These confer some modest benefits. Symptom duration is shortened by 16 hours. In Western societies, protection against complications is achieved only by treating many with antibiotics who will derive no benefit (E1).23
  • Antibiotics for acute otitis media in children: These provide a small benefit, but with an absolute reduction in pain in only 5%. Most cases resolve spontaneously. Seventeen children must be treated to prevent one child having some pain after two days. Antibiotics have no effect on hearing problems or other complications (E1).29
  • Antibiotics for acute bronchitis: These have a modest beneficial effect, but magnitude of the benefit is similar to the detriment from potential adverse effects. Patients with other symptoms of the common cold who have been ill for less than a week are not likely to show any benefits (E1).22
  • Antibiotics for the common cold: Patients receiving antibiotics did no better in terms of cure or improvement than those taking placebo and had significantly more side effects (E1).30
  • Antibiotics for acute maxillary sinusitis: In sinusitis confirmed by aspiration or radiography, penicillin improved clinical cures compared with controls. Current evidence is limited but suggests penicillin or amoxycillin therapy for 7–14 days (E1).31
1: Transfer of antibiotic resistance genes by conjugation
2: Case history — a consequence of long-term, broad-spectrum antibiotic therapy

Presentation: A 16-year-old boy was referred to a hospital emergency department by his general practitioner after presenting with fever (39ºC), rigors and left-sided pleuritic chest pain.
Investigations and history: A chest x-ray showed left lower lobe pneumonia. The boy reported that he was allergic to amoxycillin and cephalosporins (as a child he had developed a rash to these agents). He had been taking daily doxycycline for the previous three months to treat mild acne, which had not responded to self-selected, over-the-counter preparations.
Management and course: He was treated with intravenous erythromycin because of his reported β-lactam allergies, but continued to be unwell, with ongoing fevers and rigors.
The day after admission, both sputum and blood cultures grew Streptococcus pneumoniae. After 48 hours, antibiotic sensitivity results showed that the isolate was intermediate-resistant to penicillin, and resistant to both erythromycin and tetracycline. The antibiotic treatment was changed to vancomcyin.
His fever resolved over the next 12 hours, and he made a slow but full recovery over the next week.
  • This patient developed a life-threatening infection with an antibiotic-resistant strain of S. pneumoniae. Because he was likely to be allergic to β-lactams, few options remained for therapy.
  • If not allergic to β-lactams, he could have been treated with intravenous penicillin, which remains effective therapy for pneumonia and septicaemia caused by S. pneumoniae strains with intermediate penicillin resistance.
  • Carriage of the resistant strain probably resulted from the long-term doxycycline therapy. Long-term use of any antibiotic for acne is likely to select resistant strains not only of Propionibacterium acnes, but also of other bacteria carried by the patient. Because doxycycline is broad-spectrum, its use helps select strains resistant to other antibiotics, such as erythromycin.
  • Mild to moderate acne can usually be successfully treated with combined topical therapy with benzoyl peroxide and retinoic acid, after discussion with a GP on optimal application.21 Antibiotics should not be prescribed unless absolutely necessary.
3: Strategies for decreasing antibiotic resistance
Prudent use of antibiotics
General
  • Use narrow-spectrum agents whenever possible.
  • Do not use antibiotics for non-infection-related purposes (eg, to improve gastric motility or as anti-inflammatory agents in humans and for growth promotion in animals).
Therapy
  • Treat infections only when this improves patient outcome overall (balance with adverse events; not all bacterial infections need antibiotics).
  • Restrict "last-line" antibiotics for serious infections and use only where simpler agents would be ineffective.
Prophylaxis
  • Use short courses (single dose is usually sufficient in surgery).
  • Give at the correct time (eg, at the time of surgical incision).
Prevention of infection
  • Improve infection control and hygiene.
  • Improve use of vaccines.
  • Improve infrastructure (eg, safe water supply, better hospital design).
Education
  • Educate about use of antibiotics, when not to use them, infection prevention strategies.
  • Target both healthcare professionals and the general public.
Surveillance
  • How much resistance is present, in which bacteria and where?
  • How, which, where and in what quantities are antibiotics used?
  • Use to devise targeted interventions to minimise antibiotic use.
Research
  • New agents and classes of antibiotics.
  • New and better vaccines.
  • Alternatives to antibiotics for prophylaxis.
  • Better use of current antibiotics (eg, shorter therapy).
  • Improved medical devices (eg, disinfectant-impregnated intravenous catheters).
  • Protocols for improved patient care (eg, urinary catheters in place for shorter periods; remove intravenous catheters when no longer necessary).
4: "Action steps" for doctors to prevent antimicrobial resistance in the community*
  • Vaccinate — have influenza vaccine yourself; make sure infants receive Hib (Haemophilus influenzae type b) vaccine; give influenza and Streptococcus pneumoniae vaccine to at-risk patients.
  • Target the pathogen — grow cultures from the patient; target empirical therapy to likely pathogens and definitive therapy to known pathogens.
  • Use local data — know your antibiogram (local antibiotic sensitivity profiles).
  • It's OK to say "no" to patients with viral infections.
  • Use narrow-spectrum antibiotics wherever possible.
  • Treat infection, not contamination or colonisation.
  • Stop antimicrobial treatment when the infection is unlikely (eg, cultures are negative) or has been treated (often short-course therapy is sufficient).
  • Remove the causes of persisting or recurrent infections — remove indwelling catheters; drain abscesses.
  • Practise antimicrobial control — engage in local antimicrobial control efforts; use antibiotic guidelines.
  • Break the chain of contagion — stay home when you are sick (and recommend that sick patients stay home from work); keep your hands clean; follow good infection control practices; set an example!

* Adapted from the website of the US Centers for Disease Control and Prevention, "Action steps" for preventing antimicrobial resistance in the hospital.13
References
  1. Waldvogel F. Staphylococcus aureus (including toxic shock syndrome). In: Mandell G, Bennett J, Dolin R, editors. Principles and practice of infectious diseases. 5th ed. Philadelphia: Churchill Livingstone, 2000: 2065-2092.
  2.  Collignon P, Gosbell I, Vickery A, et al. Community-acquired methicillin-resistant Staphylococcus aureus in Australia. Australian Group on Antimicrobial Resistance. Lancet 1998; 352: 145-146. <PubMed>
  3.  Gosbell IB, Mercer JL, Neville SA, et al. Non-multiresistant and multiresistant methicillin-resistant Staphylococcus aureus in community-acquired infections.Med J Aust 2001; 174: 627-630. <PubMed>
  4.  Paterson D. Reduced susceptibility of Staphylococcus aureus to vancomycin — a review of current knowledge. Commun Dis Intell 1999; 24: 69-73.
  5.  Ward P, Johnson P, Grabsch E, et al. Treatment failure due to methicillin-resistant Staphylococcus aureus (MRSA) with reduced susceptibility to vancomycin.Med J Aust 2001; 175: 480-483. <PubMed><eMJA full text>
  6.  Edmond MB, Ober JF, Dawson JD, et al. Vancomycin-resistant enterococcal bacteremia: natural history and attributable mortality. Clin Infect Dis 1996; 23: 1234-1239. <PubMed>
  7.  Collignon P. Vancomycin-resistant enterococci and use of avoparcin in animal feed: is there a link? Med J Aust 1999; 171: 144-146. <PubMed><eMJA full text>
  8.  Gonzales RD, Schreckenberger PC, Graham MB, et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001; 357: 1179. <PubMed>
  9.  Tsiodras S, Gold HS, Sakoulas G, et al. Linezolid resistance in a clinical isolate of Staphylococcus aureusLancet 2001; 358: 207-208. <PubMed>
  10.  Riley T, Webbs S, Cadwallader H, et al. Outbreak of gentamicin-resistant Acinetobacter baumanii in an intensive care unit: clinical, epidemiological and microbiological features. Pathology 1996; 28: 359-363. <PubMed>
  11.  McDonald LC, Rossiter S, Mackinson C, et al. Quinupristin-dalfopristin-resistant Enterococcus faecium on chicken and in human stool specimens. N Engl J Med2001; 345: 1155-1160. <PubMed>
  12.  The use of antibiotics in food-producing animals: antibiotic-resistant bacteria in animals and humans. Report of the Joint Expert Technical Advisory Committee on Antibiotic Resistance (JETACAR). Canberra: Office of National Health and Medical Research, Oct 1999. Available at <http://www.health.gov.au/pubs/jetacar.htm>
  13.  Interagency Task Force on Antimicrobial Resistance, Co-chairs: Centers for Disease Control and Prevention, Food and Drug Administration, National Institutes of Health, Agency for Healthcare Research and Quality, Health Care Financing Administration, Health Resources and Services Administration, Department of Agriculture, Department of Defense, Department of Veterans Affairs, Environmental Protection Agency. A public health action plan to combat antimicrobial resistance, 2001. Available at <http://www.cdc.gov/drugresistance/actionplan/html/index.htm>
  14.  World Health Organization. WHO global strategy for containment of antimicrobial resistance. Geneva: WHO, 2001. Available at <http://www.who.int/emc/amrpdfs/WHO_Global_Strategy_English.pdf>
  15.  Sherley M, Gordon DM, Collignon PJ. Variations in antibiotic resistance profile in Enterobacteriaceae isolated from wild Australian mammals. Environ Microbiol2000; 2: 620-631. <PubMed>
  16.  Rountree P, Beard M. Hospital strains of Staphylococcus aureus with particular reference to methicillin-resistant strains. Med J Aust 1968; 26: 1163-1168.
  17.  Townsend DE, Ashdown N, Bradley JM, et al. "Australian" methicillin-resistant Staphylococcus aureus in a London hospital? Med J Aust 1984; 141: 339-340.<PubMed>
  18.  Dutka-Malen S, Leclercq R, Coutant V, et al. Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in gram-positive bacteria.Antimicrob Agents Chemother 1990; 34: 1875-1879. <PubMed>
  19.  Sievert DM, Boulton ML, Stoltman G, et al. Staphylococcus aureus resistant to vancomycin — United States, 2002. MMWR Morb Mortal Wkly Rep 2002; 51: 565-567. <PubMed>
  20.  Collignon PJ, Turnidge JD. Antibiotic resistance in Streptococcus pneumoniaeMed J Aust 2000; 173 Suppl: S58-S64. <PubMed>
  21.  Therapeutic Guidelines Ltd. Therapeutic guidelines: antibiotic. Version 11. Melbourne: Therapeutic Guidelines Ltd, 2000: 169.
  22.  Smucny J, Fahey T, Becker L, Glazier R. Antibiotics for acute bronchitis (Cochrane Review). Cochrane Library 2001; 4. Oxford: Update Software.
  23.  Del Mar CB, Glasziou PP, Spinks AB. Antibiotics for sore throat (Cochrane Review). Cochrane Library 2001; 4. Oxford: Update Software.
  24.  Nasrin D, Collignon P, Roberts L, et al. Effect of β-lactam antibiotic use in children on pneumococcal resistance to penicillin: prospective cohort study. BMJ2002; 324: 28-30. <PubMed>
  25.  McIntyre PB, Chey T, Smith WT. The impact of vaccination against invasive Haemophilus influenzae type b disease in the Sydney region. Med J Aust 1995; 162: 245-248. <PubMed>
  26.  Spelman DW. Hospital-acquired infections. Med J Aust 2002; 176: 286-291. <PubMed><eMJA full text>
  27.  Collignon P. Hospital-acquired infections: a skeleton in the closet of medical progress. Med J Aust 1995; 163: 228. <PubMed>
  28.  Nichols R. Prophylaxis for surgical infections. In: Gorbach S, Bartlett J, Blacklow N, editors. Infectious diseases. Philadelphia: WB Saunders, 1992: 393-403. 1: Management plan for antibiotic resistance.
  29.  Glasziou PP, Del Mar CB, Sanders SL, Hayem M. Antibiotics for acute otitis media in children (Cochrane Review). Cochrane Library 2001; 4. Oxford: Update Software.
  30.  Arroll B, Kenealy T. Antibiotics for the common cold (Cochrane Review). Cochrane Library 2001; 4. Oxford: Update Software.
  31.  Williams JW, Aguilar C, Makela M, et al. Antibiotics for acute maxillary sinusitis (Cochrane Review). Cochrane Library 2001; 4. Oxford: Update Software.

Un nuevo anticolesterol en el horizonte


Un nuevo anticolesterol en el horizonte
Los pacientes con colesterol y también, por qué no decirlo, la industria farmacéutica, están de enhorabuena. Un nuevo fármaco ha demostrado que es capaz de aumentar los niveles de colesterol bueno por encima de las populares estatinas; y podría convertirse en unos años en el nuevo 'superventas' del rampante negocio cardiovascular.
FUENTE | El Mundo Digital19/11/2010
Anacetrapib ha demostrado sus bondades en un ensayo publicado en la revista 'The New England Journal of Medicine' (NEJM), aunque aún le queda por dar un paso más: confirmar que más allá de reducir el colesterol, este nuevo compuesto logra reducir la tasa de infartos, muertes y otros problemas cardiacos causados por un exceso de lípidos en el organismo.

Para ello, el laboratorio que lo está desarrollando (Merck), en colaboración con la Universidad de Oxford (Reino Unido), ha puesto en marcha un ensayo clínico con 30.000 pacientes y 120 millones de euros de financiación que no arrojará resultados antes del año 2015.

Y no sería la primera vez que este análisis posterior sea un fiasco. En 2006, un estudio similar tuvo que interrumpirse cuando se descubrió que torcetrapib (éste del gigante suizo Pfizer), aumentaba un 60% el riesgo de mortalidad y un 25% las probabilidades de sufrir un infarto pese a que previamente había demostrado que reducía eficazmente el colesterol.

Así que con estos antecedentes sobre la mesa, como pronostica el diario 'The New York Times', es más que probable que anacetrapib no obtenga el visto bueno de la agencia estadounidense del medicamento (FDA según sus siglas en inglés) hasta que pueda certificar su seguridad a largo plazo.

El estudio que se ha conocido hasta el momento comparó la evolución de 1.600 pacientes que para controlar su colesterol tomaban o bien las tradicionales estatinas o el compuesto experimental. Anacetrapib logró reducir el llamado colesterol 'malo' (LDL) un 40% más que en el grupo control, mientras que el aumento de los lípidos saludables (HDL) fue un 138% superior a las estatinas.

Se trata de un primer paso prometedor, puesto que la relación entre lípidos y problemas cardiacos está bien demostrada, pero el fármaco aún deberá demostrar algo más, porque no se puede inferir automáticamente que aumentar el HDL tenga un efecto protector en el corazón de estos pacientes. 

El agua coloreada limpia gracias a los microorganismos

El agua coloreada limpia gracias a los microorganismos
Un grupo de investigación de la Universidad Nacional de Medellín trabaja en el uso de unos hongos para hacer que el agua que queda como residuo de los procesos de tintura en los textiles pueda resultar totalmente limpia gracias al uso de unos hongos provenientes de material vegetal.
FUENTE | Agencia de noticias Universidad Nacional de Colombia15/11/2010

Colombia
Ahora el agua que queda como residuo de los procesos de tintura en los textiles puede resultar totalmente limpia gracias al uso de unos hongos provenientes de material vegetal.

En la innovación trabajan el grupo de investigación Producción, Estructura y Aplicación de Biomoléculas (Probiom) de la UN en Medellín. Para lograrlo, se aislaron microorganismos de material vegetal nativo de distintas zonas del área metropolitana de Medellín. ?El proyecto, que tiene gran aplicación industrial, sobre todo en el departamento antioqueño, reconocido por su alta producción textil, tiene un importante impacto en los efluentes y ríos que tradicionalmente han recibido las aguas contaminadas provenientes de esta industria?, explicó Jersson Emir Plácido Escobar, estudiante de la Maestría en Biotecnología y uno de los ganadores de la Beca Fullbright.

Se trata de un proyecto financiado por la convocatoria del Bicentenario que se denomina Decoloración Enzimática de Colorantes Sintéticos Textiles, el cual busca la producción de enzimas ligninolíticas (obtenidas de plantas y hongos, aunque los investigadores se enfocaron en estos últimos).

Esta investigación ya ha mostrado resultados promisorios en los cuales se ha logrado degradar varios tipos de colorantes, además de efluentes (corrientes de agua), que proporcionó una importante compañía textilera del país.

En otras palabras, el agua queda transparente y no presenta toxicidad, lo que significa que puede ser vertida en los ríos después del tratamiento con los microorganismos que trabaja este grupo de investigación de la UN en Medellín.

"Luego de encontrar estos microorganismos muy promisorios para el trabajo y buena producción de enzima, ahora estamos en la fase de optimizar los medios para la producción (que sea más eficiente el proceso de decoloración)", explicó Plácido Escobar. De acuerdo con el investigador, aún falta realizar pruebas en una escala mucho más grande para ofrecer a la industria en un futuro un tratamiento rápido y eficiente.


   

Inventan un papel 'ecológico' fabricado con piedra


Inventan un papel 'ecológico' fabricado con piedra
Un poco de yeso, caliza y mármol, mezclado con resina y ya tenemos un papel de piedra. 'TerraSkin' es un nuevo material sustitutivo del papel, el cartón y el plástico respetuoso con el medio ambiente.
FUENTE | El Mundo Digital19/11/2010
Este papel innovador no necesita madera ni agua para su producción. Además, su color blanco se consigue sin utilizar cloro ni ácidos de ningún tipo. Un material resistente conseguido gracias a una combinación de polvo mineral (80% Carbonato Cálcico) y un 20% de resina no tóxica que actúa como coligante.

Comercializado en EE.UU. desde 2004, ha sido presentado en Madrid como una alternativa medioambiental al elaborado con fibra de celulosa tradicional. Llegará a Europa de la mano de Emana Green, empresa distribuidora con sede en España.

Sin árboles, sin agua y sin cloro. Este es el eslogan de la empresa estadounidense que hace hincapié en las ventajas de su producto. No requiere cortar ningún árbol, no gasta agua, ni la poluciona, no necesita ser blanqueado con cloro, utiliza un 50% menos de energía para su producción que el convencional y es 100% reciclable (se degrada con una exposición al sol de entre 3 a 9 meses). Por este motivo ha conseguido el certificado plata 'Cradle to Cradle'. Además, en su producción no se emiten gases y cuando se incinera emite un 50% menos de CO2 que el papel convencional.

Un material muy resistente al agua, a la grasa y al aceite, por lo que resulta especialmente indicado para la fabricación de bolsas, etiquetas auto-adhesivas o cuadernos.

FASE INICIAL

EE.UU., Canadá, China y Dubai ya cuentan con este material en empresas e instituciones como el MoMA de Nueva York. Ahora la empresa Miquelrius de Barcelona es la primera en Europa que lanzará una línea de productos hechos con 'TerraSkin'.

Sin embargo, su elevado precio (es un papel 4 veces más caro que el habitual) lo convierte en poco competitivo para la venta directa a los ciudadanos. "Como no es papel, las colas especiales para encuadernar son más caras. Por el momento vamos a sacar una colección pequeña a nivel industrial", afirma Sara Sabi de la empresa catalana. En este sentido, Ignacio Schmidt, director de EmanaGreen, ha asegurado que el objetivo de su empresa es llevar 'Terraskin' a los hogares en un plazo de cinco años aproximadamente. "Si todo el papel del mundo fuera de este nuevo material se ahorraría la tala de más de 3.000 millones de árboles y el equivalente en CO2 a 55 millones de coches", afirma.

A pesar de las aparentes ventajas de este material para el medioambiente, " un producto, un material o un modo de producción, por muy ecoeficiente que sea, no debe distraernos de nuestro verdadero objetivo: reducir, ahorrar y cambiar de forma radical nuestro modo de consumo. No podemos pensar que podemos consumir de manera finita en un planeta con recursos finitos. Por tanto, cuando se lanzan campañas de marketing y ecoeficiencia que fomentan el consumismo, es una contradicción con la conservación del planeta", matiza José Vicente Barcia, responsable de prensa y comunicación de la organización Ecologistas en Acción.

Por su parte 'Design and source', creadora del producto, afirma que por cada tonelada de pulpa de papel utilizada para el papel convencional, con 'TerraSkin' se salvan hasta 20 árboles, se evita la emisión de 1.200kg de CO2 y se ahorran hasta 31 toneladas de agua.

Autor:   Nadia Benyahya

El tráfico de Facebook continúa creciendo y pisa los talones a Google

El tráfico de Facebook continúa creciendo y pisa los talones a Google

En octubre de 2009, la red social contaba con 97,37 millones de visitantes únicos en Estados Unidos, que se dispararon hasta los 151,13 millones en el mismo mes de 2010
          0 votos
Disminuir fuenteAumentar fuente
ImprimirE-mail
19/11/2010 | Actualizada a las 09:28h | Internet y Tecnología
Madrid. (Portaltic / EP).- A paso de gigante, Facebook continúa aumentando su número deamigos de tal forma que ya pisa los talones al más popular de la fiesta: Google.
Es una tendencia que sucede en todo el mundo y que podemos ver de forma "tangible" gracias a las últimas cifras del mercado estadounidense. Según los datos recogidos por comScore, Facebook ha aumentado un 55,2 por ciento su número de usuarios únicos en el último año.

En octubre de 2009, la red social contaba con 97,37 millones de visitantes únicos en Estados Unidos, que se dispararon hasta los 151,13 millones en el mismo mes de 2010.

El año pasado por aquellas fechas, Facebook contaba con 300 millones de usuarios a nivel global, que actualmente se han incrementado por encima de los 500 millones (Cifra que se anunció de forma oficial en julio de este año).

Volviendo al mercado estadounidense, Facebook le está pisando los talones a Google, que tiene 173,3 millones de usuarios únicos. De esta forma, la red social de Mark Zuckerberg "solo" está por detrás del buscador en 22,17 millones de usuarios únicos en Estados Unidos.

Poco a poco, Facebook se ha convertido en la segunda web más visitada de todo el mundo y se ha ido posicionando como un rival directo de Google, la más visitada. La última -y más directa- batalla entre estos dos gigantes será el correo electrónico, después de que la red social anunciara que su servicio de mensajería integrará e-mail con una dirección propia (@facebook.com).

Está por ver si Facebook mantiene su crecimiento este año, cómo afecta la llegada del correo, si se incrementan los ataques de 'malware', el 'spam' y hasta qué punto hace mella en los otros actores, como Google, Microsoft y Yahoo!

La que parece que ya no entra en esta competencia directa es Twitter, que hace la guerra por su cuenta con un producto diferente y ha crecido en tráfico un 30 por ciento en el último año.

lista de medicamentos que conllevan un riesgo incrementado de riesgo de reacciones adversas cuando se usan en pacientes ancianos


Listado de medicamentos potencialmente inapropiados: Lista PRISCUS

En el número actual de Deutsches Arzteblatt International (Dtsch Arztebl Int 2010; 107[31-32]: 543-51), Stephanie Holt, una farmacóloga clínica y los coautores presentan la lista PRISCUS: una lista de medicamentos que conllevan un riesgo incrementado de riesgo de reacciones adversas cuando se usan en pacientes ancianos.
Los autores presentan la nueva lista, la cual ha sido desarrollada específicamente para Alemania dentro del proyecto PRISCUS (del Latin “viejo y vulnerable”) y discute sus potenciales aplicaciones. La mayoría de los pacientes toma más medicamentos a medida que ellos van envejeciendo y aumenta el riesgo de interacciones y reacciones adversas. Los medicamentos que podrían causar RAM más frecuentemente en los pacientes ancianos en comparación con la población restante son llamados medicamentos potencialmente inapropiados (MPI – PIM en Inglés). Un número de listas PIM ya existen en muchos paises.
El acceso al artículo se encuentra en el siguiente enlace

RAM en tratamiento para deshabituación tabáquica


RAM en tratamiento para deshabituación tabáquica

Los tratamientos para ayudar a los fumadores a dejar el perjudicial hábito de fumar. Sin embargo, existen reacciones adversas con el uso de estos medicamentos.
El artículo publicado en la revista Tobacco Induced Diseases nos detalla estos aspectos vinculados con los RAM en la deshabituación tabáquica.
El acceso al artículo se tiene en el siguiente enlace:

Adicción a la nicotina


NEJM: Adicción a la nicotina

Para poder entender plenamente una condición médica, es necesario revisar a fondo todos los aspectos involucrados en el paciente, los mecanismos bioquímicos.
Para ello, les presentamos el artículo publicado en el NEJM sobre la adicción a la nicotina.
El artículo se tiene en el siguiente enlace:

jueves, 18 de noviembre de 2010

Que seria de nosotros sin los libros

Educación

En esta caricatura uno podría pensar en México, que es una situación de lo más usual en nuestra relación con los EEUU ,  pero esta viñeta es publicada por el periodico el País en España, así pues no importa en que país seas ilegal, seras tratado como escoria.

Residencia Medicina del enfermo en estado crítico



"Súper superbacteria" NDM-1 se propaga por Europa -

"Súper superbacteria" NDM-1 se propaga por Europa -

Peligroso, muy peligroso; ésto facilitado por el uso irracional de antibióticos, sobre todo el uso de antibióticos en atención primaria (Puestos y Centros de Salud) como cefalosporinas de tercera generación, quinolonas y otros, solo reservado para su uso en Hospitales. Lo estoy constatanto antes en Huánuco, ahora en Junín, a vista y paciencia de las autoridades de salud regionales.

17 de noviembre de 2010, 01:41 PM
Por Kate Kelland
 
LONDRES (Reuters) - Unos 77 casos de una "superbacteria" resistente a múltiples medicamentos proveniente de India y que llegó por primera vez a Gran Bretaña en agosto se detectaron en 13 países europeos, dijo el miércoles un científico del regulador sanitario de la Unión Europea (UE).
Dominique Monnet, del Centro Europeo de Prevención y Control de Enfermedades (ECDC), indicó que estaba muy preocupado por la emergencia de la NDM-1, o metallo-betalactamasa de Nueva Delhi, y otras bacterias similares que son resistentes a la más poderosa clase de antibióticos, conocidos como carbapenémicos.
"Yo sé que la gente está diciendo que la NDM-1 es una superbacteria, pero para mí, la NDM-1 y otras bacterias parecidas son más que superbacterias. Estamos hablando de súper superbacterias", dijo Monnet en una entrevista telefónica desde Estocolmo, donde tiene su sede el ECDC.
"Por un largo tiempo (...) los médicos en hospitales, sobre todo en las unidades de terapia intensiva, han usado a los carbapenémicos como último recurso para el tratamiento con antibióticos. Ahora, para los médicos que enfrentan a un paciente con una bacteria resistente a los carbapenémicos, las opciones (...) son limitadas", agregó.
NDM-1 es un gen que altera a las bacterias y las hace muy resistentes a la mayoría de los antibióticos. Se puede manifestar de muchas maneras y a menudo se encuentra en bacterias como la Klebsiella pneumonia y la E-coli, que pueden causar infecciones en el tracto urinario y neumonía.
Investigadores británicos reportaron en agosto la aparición de infecciones con NDM-1 en pacientes en el sur de Asia y en Gran Bretaña. Con el auge de los viajes internacionales para recibir cuidados sanitarios, los científicos temen que esta nueva bacteria se extienda pronto por todo el mundo.
Monnet dijo que un total de 77 casos de NDM-1 han sido detectados en 13 países europeos, entre ellos Gran Bretaña, Francia, Alemania, España e Italia, entre el 2008 y el 2010.
Alrededor de dos tercios de los casos se registraron en Gran Bretaña, explicó, y los datos muestran que siete de los pacientes infectados murieron.
"La mayoría de los casos estuvieron asociados con viajes o atenciones médicas en el subcontinente indio", agregó Monnet, confirmando las conclusiones del estudio británico: que los crecientes viajes internacionales y el "turismo sanitario" para recibir tratamiento en el exterior estaban contribuyendo a propagar las superbacterias por todo el mundo.
Monnet añadió que una pequeña proporción de los casos de NDM-1 fueron hallados en pacientes que habían recibido atención médica en los Balcanes.
Los expertos consideran que el uso excesivo o inadecuado de antibióticos ha fomentado la aparición de superbacterias resistentes a múltiples fármacos, como la Clostridium difficile, o el Staphylococcus aureus resistente a la meticilina (SARM).
(Editado en español por Ana Laura Mitidieri)