domingo, 9 de enero de 2011

Los avances científicos que vienen

CIENCIA

Los avances científicos que vienen

La prestigiosa revista «Nature» lanza sus predicciones para este año. La publicación casi siempre aciertaDesde genomas aptos para casi todos los bolsillos, a la llegada de vuelos privados espaciales

Día 09/01/2011
Una máquina cuántica que desafía la realidad, la primera forma de vida artificial de Craig Venter o el genoma del Neandertal fueron elegidos por la prestigiosa revista «Science» entre los diez mejores hallazgos científicos del año que acaba de terminar. Ahora, la revista «Nature» realiza sus predicciones sobre cuáles son los hallazgos clave que pueden emerger del mundo de la investigación en este año que comienza.
Células IPS o reprogramadas
El clima cálido del pasado
Un proyecto de perforación del hielo en el norte de Groenlandia podría arrojar luz sobre el penúltimo periodo cálido que vivió la Tierra, el interglacial eemiense. En julio las perforadoras alcanzaron el lecho rocoso a más de 2.500 metros de profundidad, y ahora los investigadores están analizando el gas y las partículas atrapadas en el hielo para conocer detalles de este periodo que tuvo lugar hace 130.000-115.000 años, cuando la temperatura media global del planeta era 5ºC superior a la actual.
Genes y enfermedades
Los estudios del genoma completo, donde se compara el ADN de personas con una enfermedad con el de otras sin esa patología, han revelado vínculos entre enfermedades y algunas regiones del genoma, pero no han logrado avanzar mucho sobre la bioquímica que hay detrás de esas asociaciones, algo que se espera pueda ocurrir en 2011.
Células como tubo de ensayo
Los investigadores ya saben cómo convertir una célula de la piel en una célula nerviosa o en cualquier otro tipo celular. Esa tecnología, aún verde para aplicarse en tratamientos a pacientes, será este año muy útil en proyectos de investigación. Las células humanas reprogramadas serán las mejores ratas de laboratorio para probar nuevos medicamentos e investigar, sobre todo enfermedades psiquiátricas que no tienen buenos modelos animales con los que ensayar.
Genoma para todos
Este año podría ser el momento del genoma «low cost», cuando por unos 1.000 dólares cualquiera pueda obtener su mapa genético. Con la nueva generación de máquinas de secuenciación, el número de genomas secuenciados por completo se disparará.
La «partícula de Dios»
Aunque es poco probable que el esquivo bosón de Higgs (la llamada «partícua de Dios») pueda ser verificado este año por el Gran Colisionador de Hadrones (LHC), hay posibilidades de que el LHC aporte evidencias sobre la supersimetría en la naturaleza, la teoría por la que toda partícula tiene un socio superpesado por descubrir. En Illinois, se quiere retrasar el cierre de su acelerador de partículas (el Tevatron) por hallar el bosón de Higgs.
La hora de la materia oscura
Están en marcha una serie de experimentos subterráneos, como el Xenon 100 en Italia o el de búsqueda criogénica de materia oscura en Minesota (Estados Unidos), que esperan identificar partículas de materia oscura.
Avance contra la hepatitis C
Se espera que en 2011 la Agencia de Medicamentos de Estados Unidos apruebe la comercialización del telaprevir, indicado contra el virus de la hepatitis C, con el que está infectado el 3% de la población mundial.
Un gemelo para la Tierra
Los «cazadores» de planetas anticipan que el telescopio Kepler de la NASA captará este año un planeta parecido a la Tierra orbitando una estrella similar al Sol.
Los últimos transbordadores
El último vuelo de la flota de transbordadores espaciales de la NASA está previsto para el mes de abril, cuando se trasladará a la Estación Espacial Internacional el Espectrómetro Alfa Magnético (AMS) para la búsqueda de antimateria y materia oscura. Sin embargo, el Congreso de Estados Unidos podría autorizar otra salida de un transbordador en noviembre. Asimismo, si la segunda prueba de lanzamiento del «Dragon», la nave desarrollada por SpaceX, una firma comercial de vuelos espaciales de California, termina con éxito, el lanzamiento de vuelos privados con tripulación o carga será una realidad.
Explorar el sistema solar
En marzo, la misión Messenger de la NASA está llamada a convertirse en la primera nave en orbitar Mercurio, mientras que en agosto la sonda Dawn orbitará a uno de los componentes más grandes del cinturón de asteroides Vesta. Otras misiones previstas incluyen a Juno, que orbitará los Polos de Júpiter, o el vehículo robótico Mars Science Laboratory, que desentrañará los secretos del planeta rojo.
El superláser coquetea
con la fusión
Los responsables del Laboratorio Lawrence Livermore (California) esperan que su láser NIF (siglas en inglés del Centro Nacional de Ignición), el más potente del mundo, obtenga energía de la fusión nuclear mediante el bombardeo con rayos láser.
Estudiando la Tierra
El satélite GOCE de la Agencia Espacial Europea, diseñado para medir el campo gravitatorio terrestre, publicará resultados durante este año, que servirán para vigilar el aumento del nivel del mar. Mientras tanto, la NASA lanzará el satélite Aquarius para estudiar la salinidad de los océanos y el Glory se centrará en la radiación solar y los aerosoles.

sábado, 8 de enero de 2011

ESTAR 24 HORAS DESCONECTADO DE LA TECNOLOGÍA PROVOCA SÍNDROME DE ABSTINENCIA



ESTAR 24 HORAS DESCONECTADO DE LA TECNOLOGÍA PROVOCA SÍNDROME DE ABSTINENCIA


Los participantes de un estudio no tuvieron acceso a teléfonos, iPods, Facebook ni Twitter, y sintieron como si dejaran una droga o estuvieran a dieta. La música fue lo que más extrañaron.
¿Cómo te sentirías si estuvieras ‘desconectado’ del mundo por 24 horas? Esa fue la pregunta que tuvieron que responder 200 estudiantes de la Universidad de Maryland luego de someterse a un estudio voluntario que consistía en contar sus experiencias tras haber estado un día entero alejados de sus teléfonos celulares, iPods, —por ende de Facebook y Twitter–, laptops y hasta de periódicos. Solo usaron teléfonos fijos y leyeron libros.
Los resultados fueron sorprendentes. Según el portal de noticias de tecnología Fayerwayer, la mayoría experimentó un síndrome de abstinencia que ha recibido el nombre de “Trastorno de Privación de Información”.
“Algunos de los participantes dijeron sentirse como si estuvieran tratando de dejar una droga, mientras otros indicaron que era como estar a dieta”, indicó el portal. Los estudiantes escribieron sus sensaciones. “He recibido varias llamadas que no podía responder”, escribió uno. “A las 2 p.m. empecé a sentir la urgente necesidad de revisar mi correo electrónico. Me sentía como en una isla desierta“, escribió otro.
“No solo se vieron síntomas psicológicos, sino que también físicos”, señaló el doctor Roman Gerodimos, que participó en la investigación desde la Bournemouth University en Inglaterra. El estudio fue realizado por 12 universidades alrededor del mundo.
Según el especialista, al parecer lo más difícil de aguantar fue la abstinencia a la música, pero muchos también sintieron ansiedad por haberse alejado del teléfono móvil y del Facebook. “Los estudiantes pueden vivir sin televisión y sin periódico, pero no pueden sobrevivir sin su iPod”, fue una de las conclusiones del estudio que se puede encontrar aquí.
¿Tú podrías ‘desconectarte’ por 24 horas?

Rocks, Zircon Zapping and a Big Shrimp

January 7, 2011, 4:02 PM

Rocks, Zircon Zapping and a Big Shrimp

Weathering of Ferrar dolerite at Mt. Sirius.John GoodgeWeathering of Ferrar dolerite at Mount Sirius.
John Goodge
John Goodge, left, a professor of geological sciences at the University of Minnesota-Duluth, and Jeff Vervoort, an isotope geochemist from Washington State University, are writing from their research expedition in Antarctica.
Saturday, Jan. 1
Sample bags and rock boxes sealed for retrograde cargo to McMurdo.John GoodgeSample bags and rock boxes sealed for retrograde cargo to McMurdo.
We’re just about done! We had a camp pull-out a few days ago, so now we have our tents pitched at the CTAM base camp until we head north to McMurdo. Our first task is to divide camp gear from rock samples to prepare for “retro” (short for retrograde cargo). So far, we have collected more than 24 wooden boxes of rock samples, each weighing about 85 pounds, or about a ton of material in total. Each sample is cataloged in notes, labeled, put in a bag and finally put into a rock box.
On New Year’s Eve, we were able to get in a short helo trip to Mount Sirius, about a 20-minute flight from CTAM, to look at deposits of the Sirius Formation. These glacial deposits are about 20 million to 30 million years old and represent an early stage in the recent glacial history of Antarctica, which began about 34 million years ago. The deposits at Mount Sirius consist of mud- and silt-rich sediment containing cobbles and boulders of different rock types. The presence of Cambrian limestone clasts tells us that the material we are sampling comes from under the ice sheet. Happily, we collected a variety of igneous and metamorphic rocks that will help fill in the hole left by several other unproductive sites. The deposits at Mount Sirius sit on top of a mesa of Ferrar dolerite igneous rocks, which weather to form curious patterns.
A helicopter taking off from Mt. Sirius.John GoodgeThe helicopter taking off from Mount Sirius.
What are our scientific findings? Great question, but at this point we don’t have definite conclusions. That’s because our fieldwork this season is mainly geared toward collecting rock samples out of the glacial moraines for lab analysis later on. Other than noting the general variety of rock types transported by glacial process, it’s difficult to interpret their specific origins. One granite looks pretty much like another, even if they are of completely different ages and origins. In this post I try to give a sense of the lengthy lab process yet to come, but for now this is mostly a collecting trip. Some of our earlier results from a pilot study a few years ago, mentioned here and in my first post, offer a taste of the kinds of things we expect to find.
If it’s possible to personify the different moraines, probably our most obvious finding is that they are quite fickle. Some contain only local rock types, and in several places this consists of Beacon Supergroup sedimentary rocks and the Jurassic Ferrar sills that intrude them. These geologic units overlie the craton we want to study and so don’t tell us very much. The resident experts on these rocks, David Elliot and John Isbell, think that the Beacon strata do not extend too far toward the plateau from the Transantarctic Mountains, so it is reasonable to predict that the glaciers might do a good job eroding the crystalline basement beneath. Disappointingly, this is not always the case. Near faster ice streams, like Byrd Glacier, we found a rich assortment of igneous and metamorphic rocks, probably eroded from the upstream craton, even though the local nunatak geology exposes only Beacon and Ferrar. But in other cases, we’ve come up essentially empty-handed. This is likely to be a combination of the thick sediment cover as well as the fact that the ice coming into the mountains in some places does not have as large a catchment area behind it, in which case the ice is not moving as quickly and cannot erode as effectively. So, not surprisingly, sometimes we have been successful in finding basement rock types, and other times not at all.
Locally-derived moraine scoured from outcrop of Beacon strata with Ferrar sills, Dominion Range.John GoodgeLocally derived moraine scoured from outcrop of Beacon strata with Ferrar sills, Dominion Range.
What’s next? Now that we have collected our rock samples, our research has just begun. We have learned some important things from our fieldwork, but the real answers to our questions won’t come until after lab analysis on the samples. In addition to field support provided by the United States Antarctic Program, our continuing lab work will be supported by a grant to Jeff and me from the National Science Foundation. From McMurdo, our samples will go by ship to California, and will then be hauled as truck freight to my home campus in Duluth, Minn. From there, it will be at least a year before we know the first results that will tell us something new. The process begins with unpacking our samples, laying them out to sort, photograph and catalog. Next we cut them all with a rock saw — like a mason’s saw, a rock saw has a circular steel blade with diamonds embedded in the cutting surface to slice through rock samples. We then make slides of the samples for microscopic study. When sliced very thin, to approximately 30 microns (a micron is one-thousandth of a millimeter), most minerals and rocks are translucent and can be observed with a polarizing microscope. We will study these “thin sections” to identify minerals and textures in the rocks that tell us something of their origin, and we will also use light microscopy and a scanning electron microscope to search for the mineral zircon.
Zircons hold the key to this project. Zircon is a zirconium silicate mineral that is very hard, physically durable and chemically resistant to modification. It also incorporates atoms of uranium, lutetium, titanium and other rare earth elements in its crystal structure during growth. This is quite valuable, because isotopes of uranium (so-called parent) naturally decay by radioactive process to isotopes of lead (the daughter), and the balance of uranium to lead isotopes is directly related to the age of the zircon by a factor known as a decay constant. In a similar way, lutetium decays to the element hafnium, and the relative abundances of these elements in zircon provide us information about the earlier origin of the rock host (Jeff Vervoort will write more about this soon). Once we find zircons in the samples, we will take the thin sections to Jeff’s lab at Washington State University in Pullman, where we will analyze the isotopes in the zircons with a mass spectrometer equipped with a laser that can ablate the zircons and ionize the elements of interest for U-Pb geochronology. Informally, this is known as “zapping” the zircons. This method provides a quick way to screen the samples by their age, so we can focus on the oldest ones. There are, for example, large masses of Cambrian granite (about 500 million years old) in the Transantarctic Mountains, and we are mainly interested in learning about the history of the East Antarctic continent that precedes formation of the granites. So if we see preliminary isotopic evidence that a sample is older than this age threshold, we will move it on to the next step.
The SHRIMP-II in the Research School of Earth Sciences at Australian National University. This is one of four models of ion microprobe built at ANU.The Shrimp-II in the Research School of Earth Sciences at Australian National University. This is one of four models of ion microprobe built at A.N.U.
Once we have identified a smaller pool of samples not represented in the local outcrop geology, we will then ship them to Canberra, Australia. There, at the Australian National University, is a group of instruments generally referred to as ion probes. These machines focus a beam of ions at a target (in this case zircon) to liberate atoms into the flight path of a mass spectrometer. Ionized atoms from the sample travel through electrostatic filters and a large magnet, which separate the ions by mass and charge; after separation, the ions of different masses are counted by precisely positioned collectors. In this case, the A.N.U. has been building a special class of ion probes since the 1980s called Shrimp, which stands for sensitive high-resolution ion microprobe. The name Shrimp belies their actual size. These instruments cover a floor space of about 13 feet by 20 feet. It is by virtue of their size, the so-called turning radius of the mass spectrometer’s magnet, that they are so powerful in dating zircons of only a few tens of microns in size by the U-Pb method. In other words, analyzing something very small sometimes takes something very big. Mark Fanning is a leading expert with Shrimp and will lead up the U-Pb geochronology.
To work on zircons at the A.N.U. facility, we will crush the rocks, separate the zircon crystals, mount them in epoxy disks and polish them so that cross sections of their interiors are revealed. In many cases, zircons grow by an accretionary process akin to the formation of hailstones — the core of the hailstone grows first, followed by successive outer layers. Zircons can form in the same way, but each successive growth phase may be separated by millions to even billions of years. Of course, hailstones grow by condensation of water, but zircons most commonly grow by crystallization from a silicate melt at temperatures in excess of 700 degrees Celsius. The ion probe allows us to analyze each part of the zircon separately, giving us a full history of the rock in which it formed.
Images of zircon in cross section, as imaged by cathodoluminescence detector on a scanning electron microscope. These zircon crystals are about 100 microns long, and show internal structures related to their growth.Created by Digital Micrograph, Gatan Inc.Images of zircon in cross section, as imaged by cathodoluminescence detector on a scanning electron microscope. These zircon crystals are about 100 microns long, and show internal structures related to their growth.
Once we determine the age history of the zircons, and thus their host rocks, we can then measure their ratio of different isotopes of oxygen, which can tell us whether the zircons originated in the earth’s crust or mantle. To bring us full circle, we will next return to Jeff’s lab to measure the hafnium isotope compositions in these zircons. Together, the U-Pb age, oxygen and hafnium isotope data will help us understand when and where within the earth a zircon formed, and what its complete history was preceding its latest stage of formation. All of these steps are quite involved, and in a best-case scenario, we will not have all of the analyses done before late in 2012. We have a great collection of material to work with, but instant gratification is not a characteristic of analytical geochemistry!
Outcrop exposure of gneiss from Milan Ridge in the Miller Range, with lens-shaped felsic zones bordered by mafic selvedges, indicative of local melting. The question is, when did melting occur, and is there a record of this event in the glacial clasts?John GoodgeOutcrop exposure of gneiss from Milan Ridge in the Miller Range, with lens-shaped felsic zones bordered by mafic selvedges, indicative of local melting. The question is, when did melting occur, and is there a record of this event in the glacial clasts?
By combining these data with the rock’s mineralogy and texture, we can write a history for each small piece of crust we have collected from the glacial moraines. With the hundreds of samples we have to work with, we hope to find patterns that we can use to reveal the architecture of the ice-covered craton that we cannot see directly. As part of a pilot study, we found clasts with ages of 1,100 million, 1,460 million, 1,580 million and 1,880 million years, along with a slew of Ross Orogen igneous and metamorphic rocks dating to about 500 million years ago. The first four ages are completely unknown in exposed rocks found over about 2,500 miles of the Transantarctic Mountains, so they represent a completely new chapter in the geologic history of East Antarctica. These data might help determine what kinds of rocks make up the enigmatic Gamburtsev Subglacial Mountains, a hidden mountain range of great interest to the glaciology community where the ice cap first started growing 34 million years ago. They can also provide us with a way to match the ages of hidden rocks in East Antarctica with those known from the now distant continents of Australia and North America.
Field party of project G-503 at Mt. Sirius. From left to right, Dylan Taylor, John Goodge, Jeff Vervoort, Tanya Dreyer and Mark Fanning.Field party of Project G-503 at Mount Sirius. From left to right, Dylan Taylor, John Goodge, Jeff Vervoort, Tanya Dreyer and Mark Fanning.
For now, we have a few things to tidy up at CTAM and McMurdo. It’s been a great field season, but as with any lengthy trip away — now nearly seven weeks long — we are all eager to wrap things up and head home. As much as I enjoy being in the field and am happy to live in a tent camp in the snow, spending each night in a sleeping bag with a meager pad on hard snow gets old. Of course, in Antarctica, there is no such thing as a scheduled return. We won’t book seats on the flight home until we land in New Zealand, and just as on our way down here, we can get held up by weather and aircraft availability at any time. So we have no idea when we will actually return home. The more anxious you get, the more likely you are to be delayed. For now, we can enjoy the bright and beautiful day opening the new year, set against a backdrop of the snow-covered buttresses of the Transantarctic Mountains.

Pasta in the Rough

THE MINIMALIST

Pasta in the Rough

Evan Sung for The New York Times
FEW people make fresh pasta at home, and it’s not difficult to see why. Who wouldn’t be put off by demonstrations that include piles of flour on cutting boards, or pasta-rolling machines spitting out six-foot ribbons of gorgeous dough?

Related Recipe

Fortunately, there is an easy way. A food processor makes quick work of the dough, and a rolling pin, which predates the pasta machine, still works (though a little practice with the machine can make life easier in the long run). And as for fancy shapes: why bother? The handkerchief (fazzoletti) shape — a rectangle or square, as you like — is as traditional as anything else, and as delicious.
The dough, in this case, is of the classic Emilia-Romagna style, loaded with eggs and therefore easy to handle, a lovely color and deliciously rich. You can form a well in the middle of a pile of flour, crack eggs into it and use a fork to slowly and painstakingly incorporate the flour into the eggs — but the food processor is faster.
Now, however, you must wait, because if you don’t let the dough rest before rolling, it will resist your efforts. After a half-hour or so at room temperature (or longer in your refrigerator), it’ll be more pliable. You can then use a rolling pin (or a wine bottle) to roll the dough out until it is thin. Don’t worry about ragged edges. You cut the dough into squares — or rectangles or triangles or whatever — that are boiled until just tender.
You can serve fazzoletti with nothing more than butter and Parmesan, or a drizzle of garlic-infused olive oil. Here, I use a super-rustic pesto, with crunchy bits of pine nuts in a sauce that’s rough, flavorful and lovable, just like the pasta.

Soba Sails From Japan

A GOOD APPETITE

Soba Sails From Japan

Andrew Scrivani for The New York Times
MY food rut of 2010 was soba. I was complacent, preparing it the same way every time by tossing the slender buckwheat strands with broth, scallions and sesame oil and then throwing a piece of seared salmon on top.
At the beginning of the year, it was time to break out. Just because soba originally comes from Japan doesn’t mean it needs to stay there. The springy, earthy noodles are an excellent base for other flavors. The first thing to go was the broth, since I wanted to create more of a soba salad than a soup.
To keep the noodles from sticking together and to add a peppery, herbal flavor, I coated them with the best extra virgin olive oil I had in the cupboard, along with some Meyer lemon juice and zest for brightness (and because I had a few of the lemons on hand) and garlic for bite.
As for the salmon, I had planned to keep it in the mix. But at the fish store, another, paler pink fillet caught my eye: Arctic char.
I wanted to repeat what I’d done the last time I cooked Arctic char: drizzled it with toasted whole cumin seeds steeped in olive oil, then roasted the fish until just cooked through, succulent and moist.
At this point my dish had not only left Japan, but was also wandering all over the map. I probably should have left well enough alone, but I’d traveled so far already that there was one more thing I wanted to try: crunch. I toasted some pine nuts, which are softer than other nuts, so they’d provide just a little something to challenge the teeth, but nothing too jarring. And I like the way they taste with cumin.
When it was all done, the creamy pink fish and pale noodles both looked and tasted like the picture of culinary cohesion — a new dish for a new year.